Resonance-DIS transition and low Q^2 phenomena

Wally Melnitchouk

Jefferson Lab

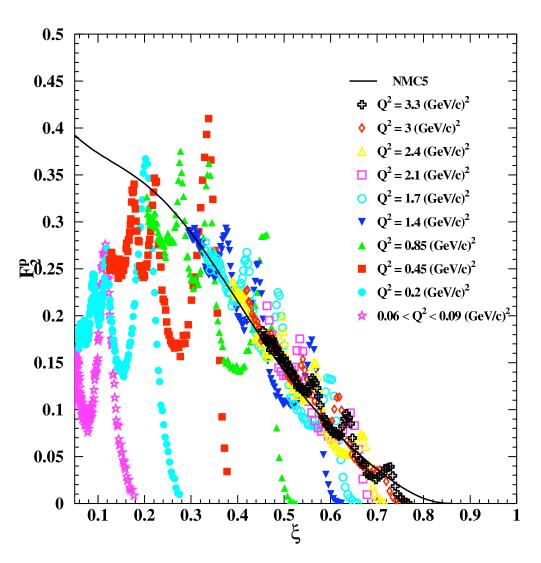
+ F. Close (Oxford), O.Lalakulich & E. Paschos (Dortmund)

Outline

- I. Introduction: resonance-DIS transition & Bloom-Gilman duality
- 2. Duality in QCD: moments & higher twists
- 3. Local duality in dynamical quark models
- 4. Phenomenological models
- 5. DIS at low Q^2
- 6. Summary

l. Introduction

Resonance-DIS transition characterized by Bloom-Gilman duality

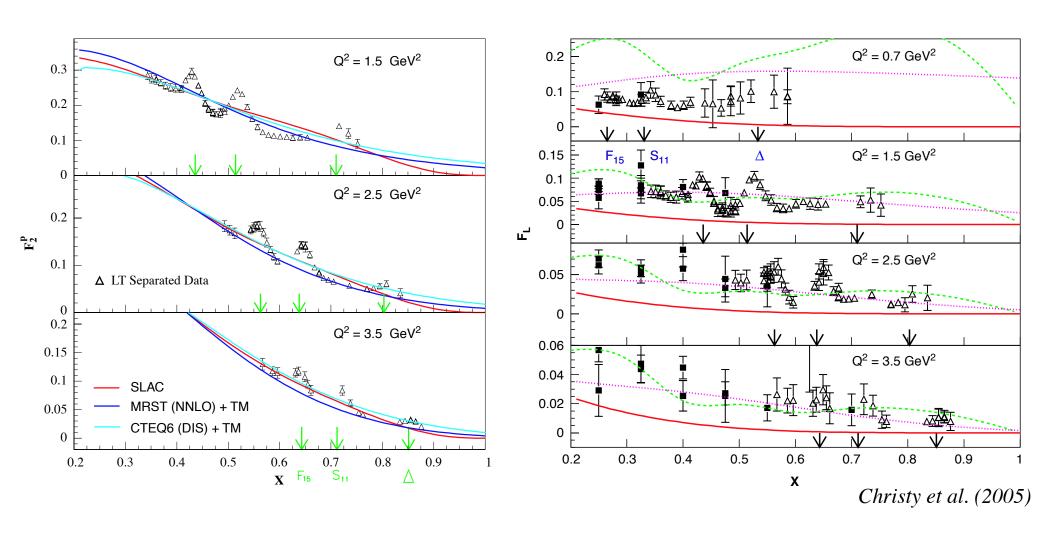


Average over (strongly Q^2 dependent) resonances $\approx Q^2$ independent scaling function

Jefferson Lab (Hall C)

Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182

Bloom-Gilman duality

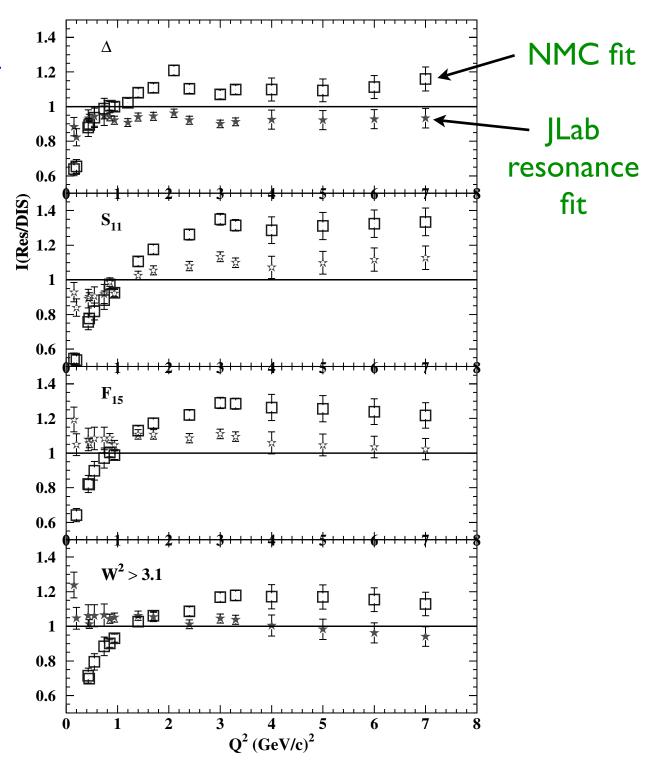


duality in F_2 and F_L structure functions (from longitudinal-transverse separation)

Integrated strength

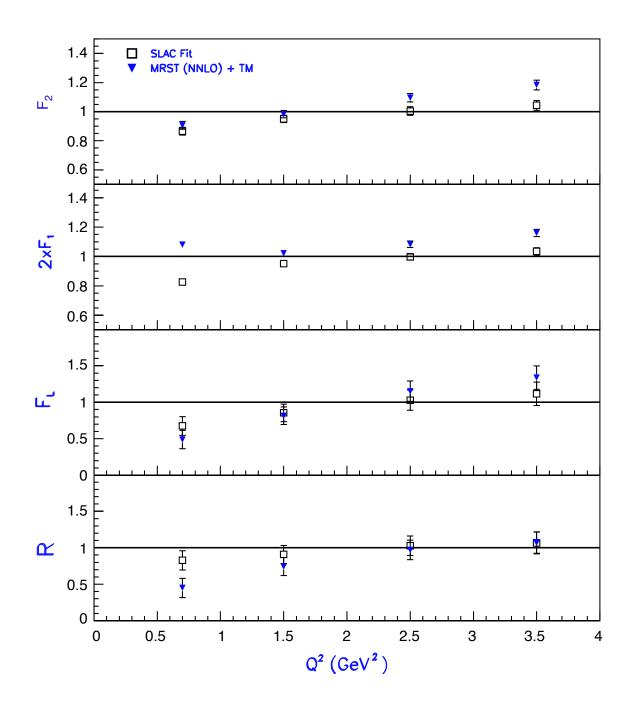
~10% agreement for $Q^2 > 1 \text{ GeV}^2$

Niculescu et al, Phys. Rev. Lett. 85 (2000) 1186



Moments

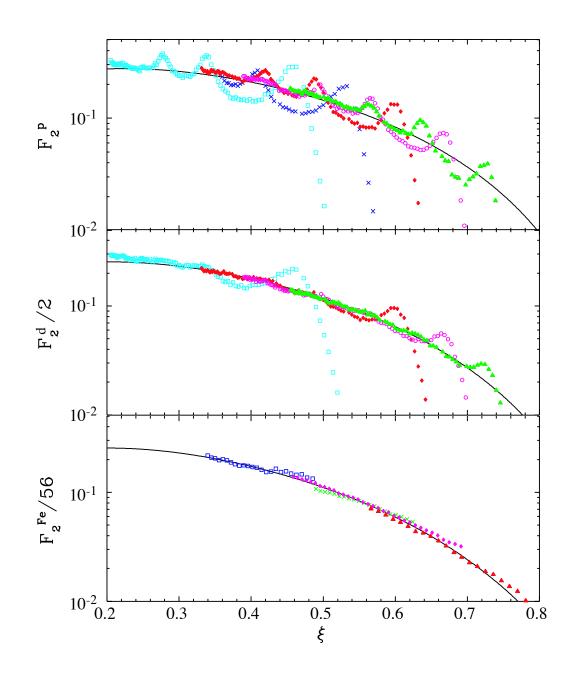
data from longitudinaltransverse separation!



Jefferson Lab (Hall C)

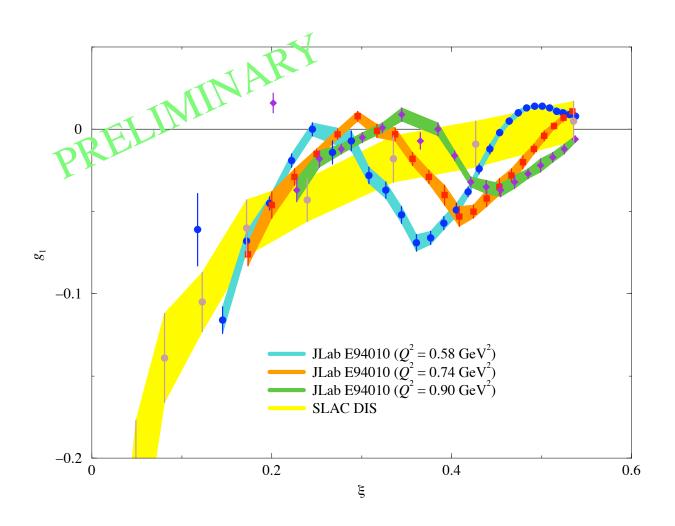
Nuclear structure functions

for larger nuclei, Fermi motion does resonance averaging automatically!



Jefferson Lab (Hall C)

Neutron (3 He) g_{1} structure function



Liyanage et al. (JLab Hall A)

2. Duality in QCD

Duality and the OPE

Operator product expansion

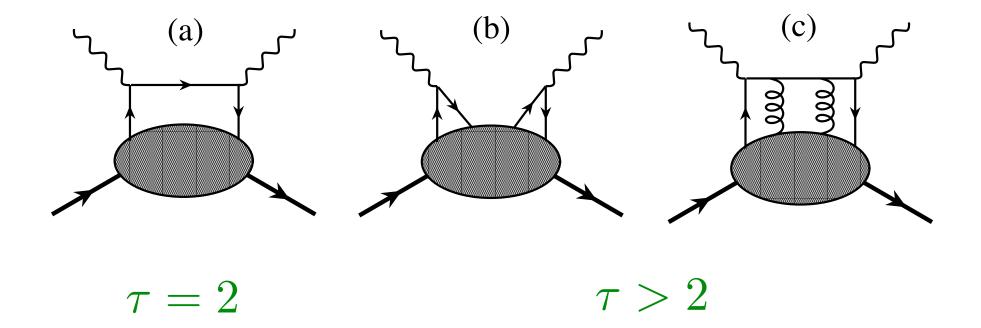
 \implies expand moments of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

matrix elements of operators with specific "twist" \mathcal{T}

$$\tau = dimension - spin$$

Higher twists



single quark scattering

nonperturbative

qq and qg

correlations

(→ confinement)

Duality and the OPE

Operator product expansion

 \implies expand moments of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

If moment \approx independent of Q^2

 \longrightarrow higher twist terms $A_n^{(\tau>2)}$ small

Duality and the OPE

Operator product expansion

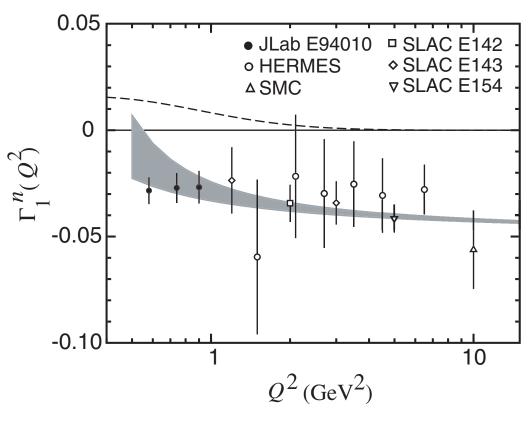
 \implies expand moments of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

Duality \ippression of higher twists

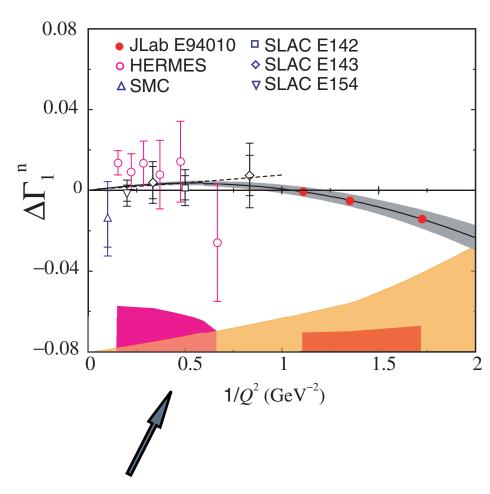
Moment of neutron g_1 structure function

Meziani, WM, et al., Phys. Lett. B613, 148 (2005)



$$\Gamma_1(Q^2) = \int_0^1 dx \ g_1(x, Q^2)$$

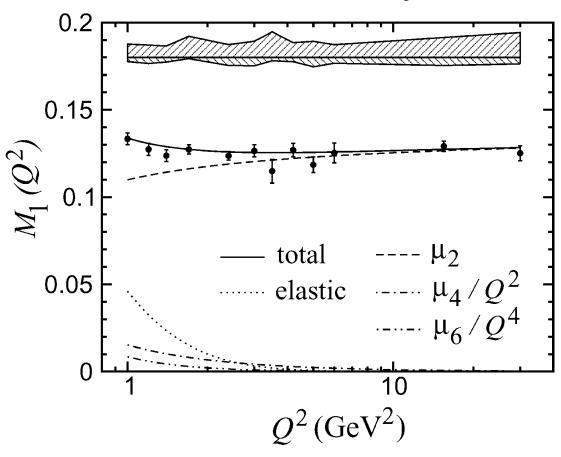
$$= \Gamma_1^{(\tau=2)}(Q^2) + \Delta\Gamma_1(Q^2)$$



higher twist small down to $Q^2 \sim 1 \text{ GeV}^2$

Moment of proton g_1 structure function

Osipenko, WM et al., Phys. Lett. B609, 259 (2005)



Total higher twist small at $Q^2 \sim 1 - 2 \text{ GeV}^2$

- nonperturbative interactions between quarks and gluons not dominant at these scales
- suggests strong cancellations between resonances, resulting in dominance of leading twist
- \longrightarrow OPE does not tell us <u>why</u> higher twists are small!

need dynamical models to understand <u>how</u> cancellations between *coherent* resonances produce *incoherent* scaling function

3. Local duality in dynamical quark models

Coherence vs. incoherence

Exclusive form factors

coherent scattering from quarks

$$d\sigma \sim \left(\sum_{i} e_{i}\right)^{2}$$

Inclusive structure functions

incoherent scattering from quarks

$$d\sigma \sim \sum_{i} e_{i}^{2}$$

become the <u>square of a sum</u> become the <u>sum of squares</u>?

Pedagogical model

Two quarks bound in a harmonic oscillator potential

exactly solvable spectrum

Structure function given by sum of squares of transition form factors

$$F(\nu, \mathbf{q}^2) \sim \sum_{n} |G_{0,n}(\mathbf{q}^2)|^2 \delta(E_n - E_0 - \nu)$$

Charge operator $\Sigma_i \ e_i \exp(i \mathbf{q} \cdot \mathbf{r}_i)$ excites even partial waves with strength $\propto (e_1 + e_2)^2$ odd partial waves with strength $\propto (e_1 - e_2)^2$

Pedagogical model

Resulting structure function

$$F(\nu, \mathbf{q}^2) \sim \sum_{n} \{ (e_1 + e_2)^2 \ G_{0,2n}^2 + (e_1 - e_2)^2 \ G_{0,2n+1}^2 \}$$

If states degenerate, cross terms ($\sim e_1e_2$) cancel when averaged over nearby even and odd parity states

Minimum condition for duality:

at least one complete set of <u>even</u> and <u>odd</u> parity resonances must be summed over

Even and odd parity states generalize to 56^+ (L=0) and 70^- (L=1) multiplets of spin-flavor SU(6)

scaling occurs if contributions from 56⁺ and 70⁻ have equal overall strengths

Simplified case: magnetic coupling of γ^* to quark

 \Longrightarrow expect dominance over electric at large Q^2

Even and odd parity states generalize to 56^+ (L=0) and 70^- (L=1) multiplets of spin-flavor SU(6)

scaling occurs if contributions from 56^+ and 70^- have equal overall strengths

representation	² 8 [56 ⁺]	⁴ 10 [56 ⁺]	² 8 [70 ⁻]	⁴ 8 [70 ⁻]	² 10 [70 ⁻]	Total
F_1^p	$9\rho^2$	$8\lambda^2$	$9\rho^2$	0	λ^2	$18\rho^2 + 9\lambda^2$
\overline{F}_1^n	$(3\rho + \lambda)^2/4$	$8\lambda^2$	$(3\rho-\lambda)^2/4$	$4\lambda^2$	λ^2	$(9\rho^2 + 27\lambda^2)/2$
g_1^p	$9\rho^2$	$-4\lambda^2$	$9\rho^2$	0	λ^2	$18\rho^2 - 3\lambda^2$
g_1^n	$(3\rho + \lambda)^2/4$	$-4\lambda^2$	$(3\rho-\lambda)^2/4$	$-2\lambda^2$	λ^2	$(9\rho^2 - 9\lambda^2)/2$

 $\lambda \; (\rho) = {\rm (anti)} \; {\rm symmetric} \; {\rm component} \; {\rm of} \; {\rm ground} \; {\rm state} \; {\rm wfn}.$

$$|N\rangle = \lambda |\varphi \otimes \chi\rangle_{\text{sym}} + \rho |\varphi \otimes \chi\rangle_{\text{antisym}}$$

Even and odd parity states generalize to 56^+ (L=0) and 70^- (L=1) multiplets of spin-flavor SU(6)

scaling occurs if contributions from 56^+ and 70^- have equal overall strengths

Similarly for neutrinos ...

representation	² 8 [56 ⁺]	⁴ 10 [56 ⁺]	² 8 [70 ⁻]	⁴ 8[70 ⁻]	² 10 [70 ⁻]	Total
$F_1^{\nu p}$	0	$24\lambda^2$	0	0	$3\lambda^2$	$27\lambda^2$
$F_1^{\nu n}$	$(9\rho + \lambda)^2/4$	$8\lambda^2$	$(9\rho-\lambda)^2/4$	$4\lambda^2$	λ^2	$(81\rho^2 + 27\lambda^2)/2$
$g_1^{\nu p}$	0	$-12\lambda^2$	0	0	$3\lambda^2$	$-9\lambda^2$
$g_1^{\nu n}$	$(9\rho + \lambda)^2/4$	$-4\lambda^2$	$(9\rho-\lambda)^2/4$	$-2\lambda^2$	λ^2	$(81\rho^2 - 9\lambda^2)/2$

 $\lambda \; (\rho) =$ (anti) symmetric component of ground state wfn.

Close, WM, Phys. Rev. C68 (2003) 035210

$$SU(6)$$
 limit \longrightarrow $\lambda = \rho$

SU(6):	$[{f 56}, 0^+]^{f 28}$	$[{f 56}, {f 0}^+]^{f 4}{f 10}$	$[70, 1^-]^2 8$	$[70, 1^{-}]^{4}8$	$[70, 1^{-}]^{2}10$	total
$\overline{F_1^p}$	9	8	9	0	1	27
F_1^n	4	8	1	4	1	18
g_1^p	9	-4	9	0	1	15
g_1^n	4	-4	1	-2	1	0

Summing over all resonances in 56^+ and 70^- multiplets

→ as in quark-parton model!

SU(6) limit
$$\implies \lambda = \rho$$

SU(6):	$[{f 56}, {f 0}^+]^{f 28}$	$[{f 56}, {f 0}^+]^{f 4}{f 10}$	$[70, 1^{-}]^{2}8$	$[70, 1^{-}]^{4}8$	$[70, 1^{-}]^{2}10$	total
F_1^p	9	8	9	0	1	27
F_1^n	4	8	1	4	1	18
g_1^p	9	-4	9	0	1	15
g_1^n	4	-4	1	-2	1	0

- \Longrightarrow expect duality to appear earlier for F_1^p than F_1^n
- \longrightarrow earlier onset for g_1^n than g_1^p
- \longrightarrow cancellations *within* multiplets for g_1^n

Similarly for neutrinos ...

SU(6) limit
$$(\lambda = \rho)$$

SU(6):	$[56,0^+]^2 8$	$[56, 0^+]^4 10$	$[{f 70},{f 1}^-]^{f 28}$	$[70, 1^-]^4 8$	$[70, 1^{-}]^{2}10$	total
$F_1^{\nu p}$	0	24	0	0	3	27
$F_1^{\nu n}$	25	8	16	4	1	54
$g_1^{\nu p}$	0	- 12	O	0	3	- 9
$g_1^{\nu n}$	25	-4	16	- 2	1	36

Summing over all resonances in 56^+ and 70^- multiplets

$$A_1^{\nu n} = \frac{2}{3} \left(= \frac{\Delta u}{u} \right)$$

as in parton model!

SU(6) may be \approx valid at $x \sim 1/3$

 \underline{But} significant deviations at large x

which combinations of resonances reproduce behavior of structure functions at large x?

Model	SU(6)	No ⁴ 10	No ² 10, ⁴ 10	No S _{3/2}	No $\sigma_{3/2}$	No ψ_{λ}
R^{np}	2/3	10/19	1/2	6/19	3/7	1/4
A_1^p	5/9	1	1	1	1	1
A_1^n	0	2/5	1/3	1	1	1

SU(6) may be \approx valid at $x \sim 1/3$

 \underline{But} significant deviations at large x

which combinations of resonances reproduce behavior of structure functions at large x?

Model	SU(6)	No ⁴ 10	No ² 10, ⁴ 10	No S _{3/2}	No $\sigma_{3/2}$	No ψ_{λ}
R^{np}	2/3	10/19	1/2	6/19	3/7	1/4
A_1^p	5/9	1	1	1	1	1
A_1^n	0	2/5	1/3	1	1	1

gives $\Delta u/u > 1$ \Longrightarrow inconsistent with duality

SU(6) may be \approx valid at $x \sim 1/3$

 \underline{But} significant deviations at large x

which combinations of resonances reproduce behavior of structure functions at large x?

Model	SU(6)	No ⁴ 10	No ² 10, ⁴ 10	No S _{3/2}	No $\sigma_{3/2}$	No ψ_{λ}
R^{np}	2/3	10/19	1/2	6/19	3/7	1/4
A_1^p	5/9	1	1	1	1	1
A_1^n	0	2/5	1/3	1	1	1

⁴10 [56⁺] and ⁴8 [70⁻] suppressed

SU(6) may be \approx valid at $x \sim 1/3$

 \underline{But} significant deviations at large x

which combinations of resonances reproduce behavior of structure functions at large x?

Model	SU(6)	No ⁴ 10	No ² 10, ⁴ 10	No S _{3/2}	No $\sigma_{3/2}$	No ψ_{λ}
R^{np}	2/3	10/19	1/2	6/19	3/7	1/4
A_1^p	5/9	1	1	1	1	1
A_1^n	0	2/5	1/3	1	1	1

helicity 3/2 suppression

SU(6) may be \approx valid at $x \sim 1/3$

 \underline{But} significant deviations at large x

which combinations of resonances reproduce behavior of structure functions at large x?

Model	SU(6)	No ⁴ 10	No ² 10, ⁴ 10	No S _{3/2}	No $\sigma_{3/2}$	No ψ_{λ}
R^{np}	2/3	10/19	1/2	6/19	3/7	1/4
A_1^p	5/9	1	1	1	1	1
A_1^n	0	2/5	1/3	1	1	1

e.g. through $\vec{S}_i \cdot \vec{S}_j$ interaction between quarks

suppression of symmetric part of spin-flavor wfn.

SU(6) may be \approx valid at $x \sim 1/3$

 \underline{But} significant deviations at large x

which combinations of resonances reproduce behavior of structure functions at large x?

Model	SU(6)	No ⁴ 10	No ² 10, ⁴ 10	No S _{3/2}	No $\sigma_{3/2}$	No ψ_{λ}
$R^{ u}$	1/2	3/46	0	1/14	1/5	0
$A_{1}^{ u p}$	-1/3	1		1		-1/3
$A_1^{\nu n}$	2/3	20/23	13/15	1	1	1

gives $d/u, \ \Delta u/u, \ \Delta d/d$ inconsistent with e scattering

SU(6) may be \approx valid at $x \sim 1/3$

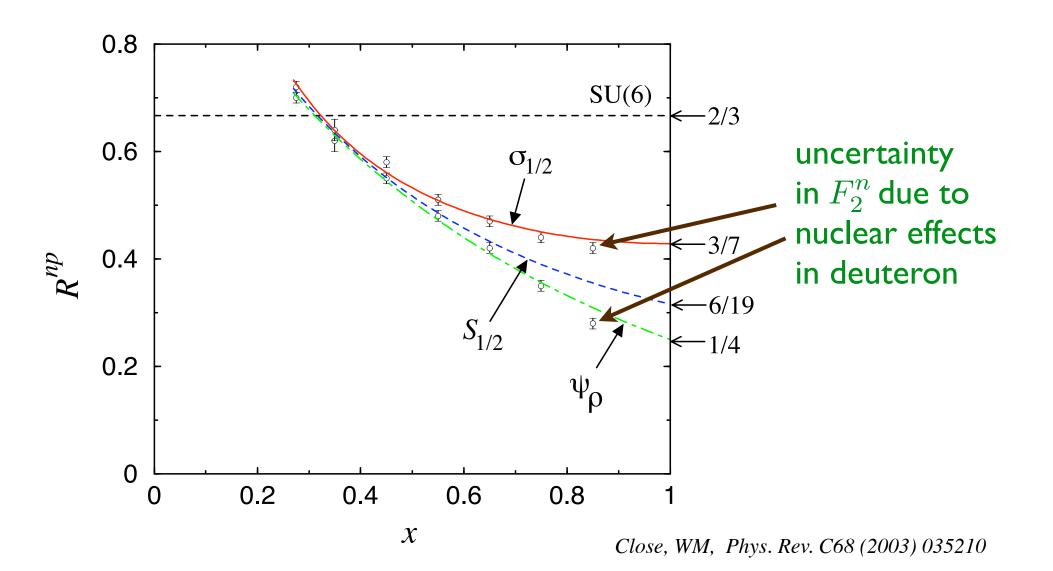
 \underline{But} significant deviations at large x

which combinations of resonances reproduce behavior of structure functions at large x?

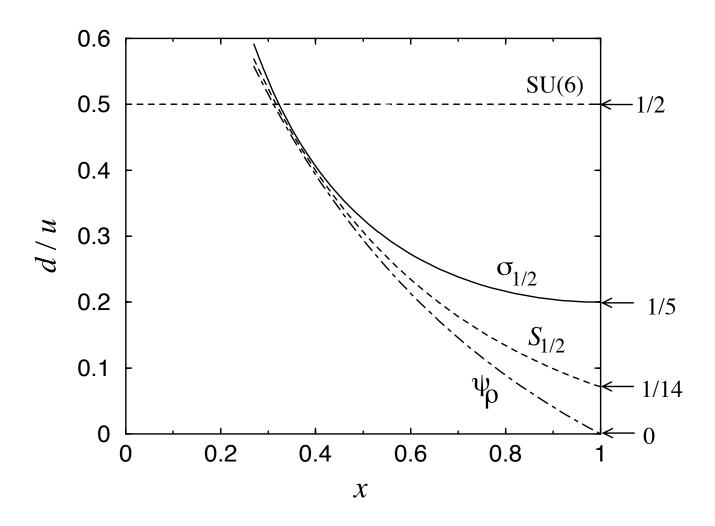
Model	SU(6)	No ⁴ 10	No ² 10 , ⁴ 10	No S _{3/2}	No $\sigma_{3/2}$	No ψ_{λ}
$R^{ u}$	1/2	3/46	0	1/14	1/5	0
$A_1^{ u p}$	-1/3	1		1		-1/3
$A_1^{\nu n}$	2/3	20/23	13/15	1	1	1

in *e* scattering

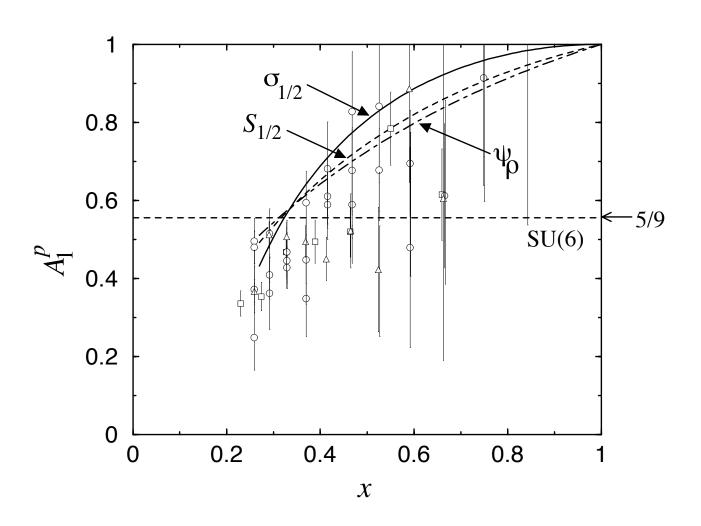
Fit to $\begin{cases} SU(6) \text{ symmetry at } x \sim 1/3 \\ SU(6) \text{ breaking at } x \sim 1 \end{cases}$



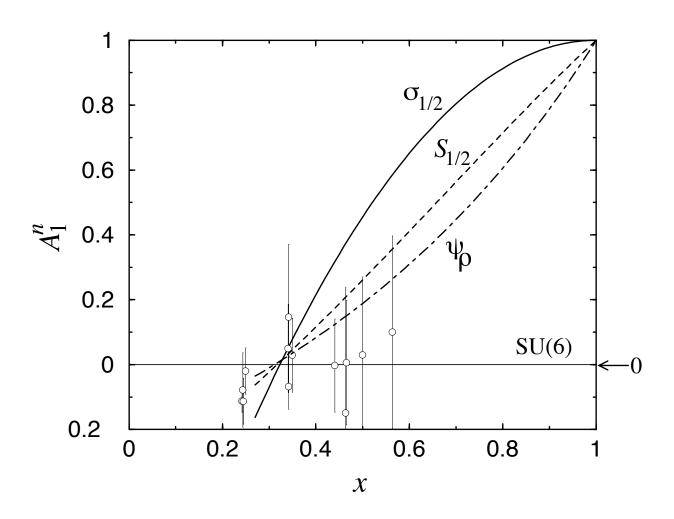
$$R^{\nu} \ (=d/u)$$



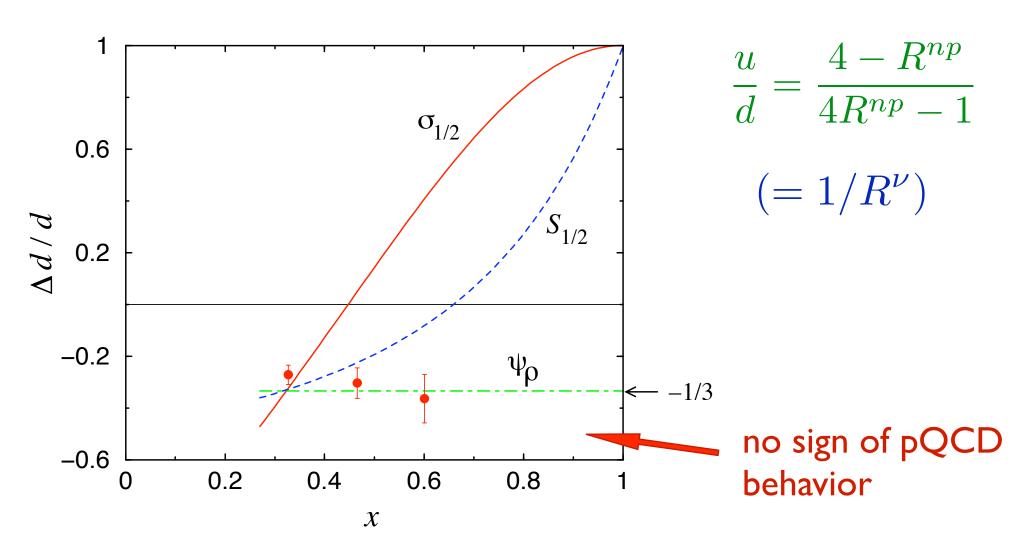
Polarization asymmetry A_1^p



Polarization asymmetry A_1^n



$$\frac{\Delta d}{d} = \frac{4}{15} A_1^n \left(4 + \frac{u}{d} \right) - \frac{1}{15} A_1^p \left(1 + 4 \frac{u}{d} \right) \quad (= A_1^{\nu p})$$



Zheng et al. [JLab Hall A], Phys. Rev. Lett. (2004) 012004

λ suppression model \implies identical production rates in 56⁺ and 70⁻ channels

representation	² 8 [56 ⁺]	⁴ 10 [56 ⁺]	² 8 [70 ⁻]	⁴ 8[70 ⁻]	² 10 [70 ⁻]	Total
F_1^p	$9\rho^2$	$8\lambda^2$	$9\rho^2$	0	λ^2	$\frac{18\rho^2 + 9\lambda^2}{}$
\overline{F}_1^n	$(3\rho+\lambda)^2/4$	$8\lambda^2$	$(3\rho-\lambda)^2/4$	$4\lambda^2$	λ^2	$(9\rho^2+27\lambda^2)/2$
g_1^p	$9\rho^2$	$-4\lambda^2$	$9 ho^2$	0	λ^2	$18\rho^2 - 3\lambda^2$
g_1^n	$(3\rho + \lambda)^2/4$	$-4\lambda^2$	$(3\rho-\lambda)^2/4$	$-2\lambda^2$	λ^2	$(9\rho^2 - 9\lambda^2)/2$
representation	² 8 [56 ⁺]	⁴ 10 [56 ⁺]	² 8 [70 ⁻]	⁴ 8[70 ⁻]	² 10 [70 ⁻]	Total
representation $F_1^{\nu p}$	² 8 [56 ⁺]	4 10 [56 ⁺] $24\lambda^{2}$	² 8 [70 ⁻]	⁴ 8 [70 ⁻]	$210[70^{-}]$ $3\lambda^{2}$	Total $27\lambda^2$
$F_1^{\nu p}$	0	$24\lambda^2$	0	0	$3\lambda^2$	$27\lambda^2$

λ suppression model \implies identical production rates in 56^+ and 70^- channels

representation	² 8[56 ⁺]	⁴ 10 [56 ⁺]	² 8 [70 ⁻]	⁴ 8 [70 ⁻]	² 10 [70 ⁻]	Total
$F_1^p \ F_1^n \ g_1^p \ g_1^n$	$9\rho^{2}$ $(3\rho +)^{2}/4$ $9\rho^{2}$ $(3\rho +)^{2}/4$	8 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$9\rho^{2}$ $(3\rho -)^{2}/4$ $9\rho^{2}$ $(3\rho -)^{2}/4$	0 $4x^{2}$ 0 $-x^{2}$	X X X	$ \begin{array}{c} 18\rho^2 + 9\lambda^2 \\ (9\rho^2 + 27\lambda^2)/2 \\ 18\rho^2 - 3\lambda^2 \\ (9\rho^2 - 9\lambda^2)/2 \end{array} $
representation	² 8 [56 ⁺]	⁴ 10 [56 ⁺]	² 8 [70 ⁻]	⁴ 8 [70 ⁻]	² 10 [70 ⁻]	Total
$F_1^{\nu p} = F_1^{\nu n}$	$0 \\ (9\rho +)^2/4$	2 4 × ² 8× ²	$0 \\ (9\rho -)^2/4$	0 4×2	¾ ² ★ ²	$\frac{27\lambda^2}{(81\rho^2 + 27\lambda^2)/2}$

for both e and v scattering

 \implies important test for future ν experiments

4. Phenomenological models

- Rein, Sehgal (1981): early model of π production in ν scattering
 - based on relativistic HO model of Feynman, Kislinger
 & Ravndal (1971)
 Rein, Sehgal, Ann. Phys. 133, 79 (1981)
- extended by Bodek, Yang to include DIS region

Bodek, Yang, hep-ph/0411202

- Matsui, Sato, Lee (2005): CC and NC π production in Δ region

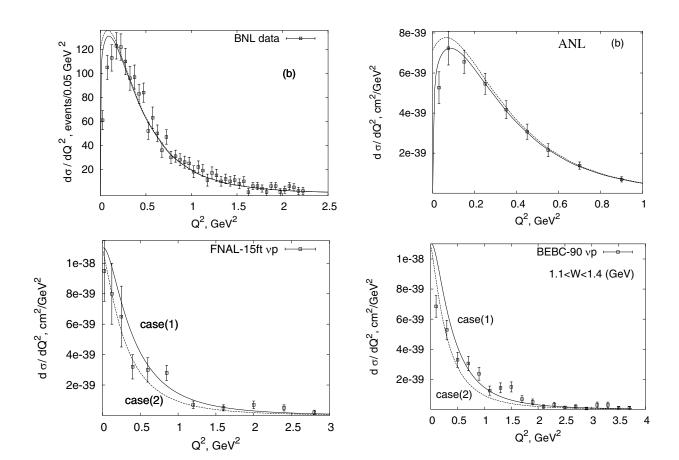
 Matsui, Sato, Lee,
 Phys. Rev. C72, 025204 (2005)
- Parameterize vNN^* vertex function with phenomenological form factors

 Lalakulich, Paschos,

Phys. Rev. D71, 074003 (2005)

Phenomenological model

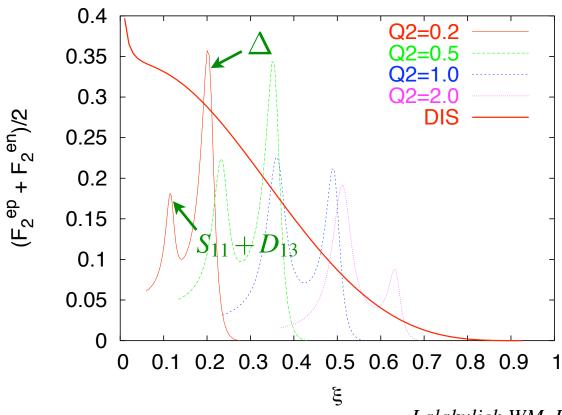
Neutrino form factors fitted to neutrino cross section data from BNL, ANL, BEBC, FNAL (more to come with MINERVA)



Lalakulich, Paschos, Phys. Rev. D71 (2005) 074003

Electromagnetic structure functions

Construct structure function from phenomenological $N \rightarrow N^*$ transition form factors

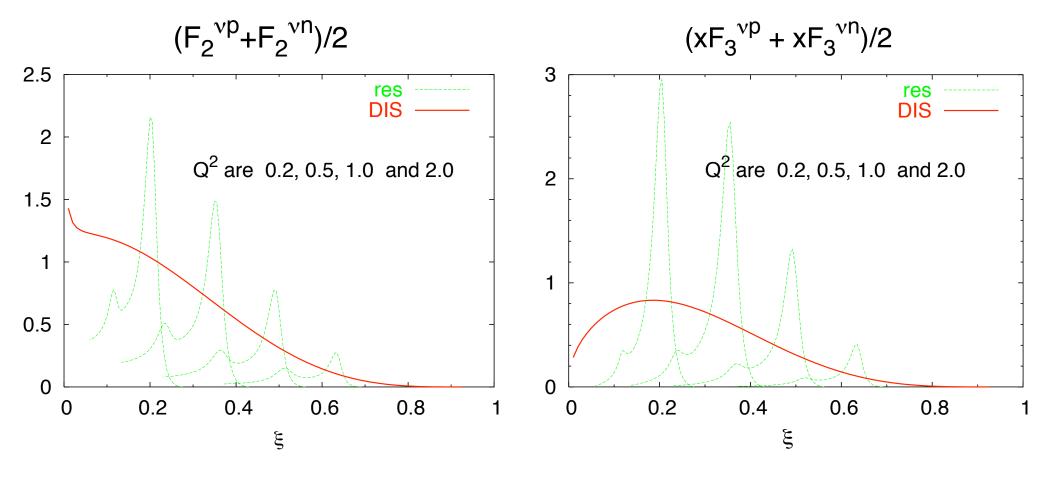


Lalakulich, WM, Paschos (2005)

Resonance widths

$$\delta(W^2 - M_R^2) \longrightarrow \frac{M_R \Gamma_R}{\pi} \frac{1}{(W^2 - M_R^2)^2 + M_R^2 \Gamma_R^2}$$

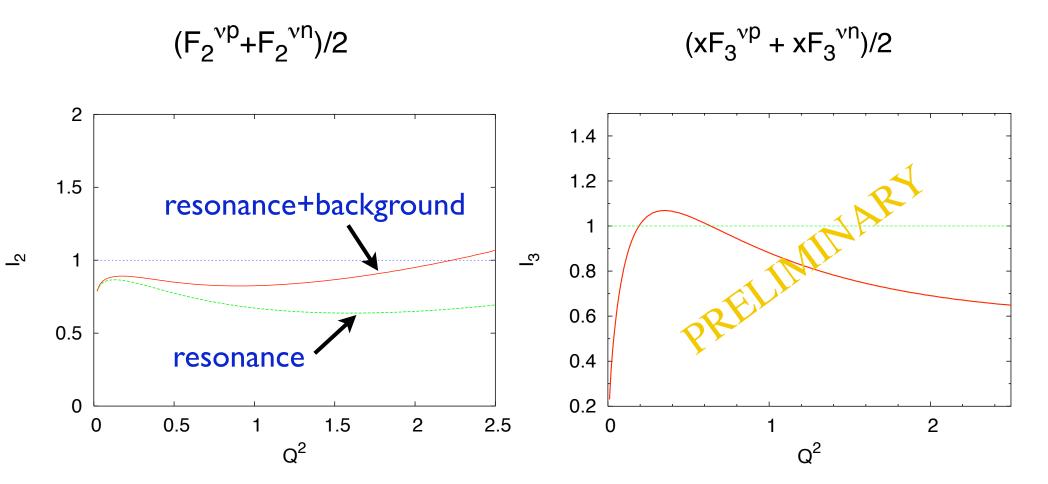
Neutrino structure functions



Lalakulich, WM, Paschos (2005)

Important to understand systematics of duality in ν scattering cf. e scattering

Integrated structure functions

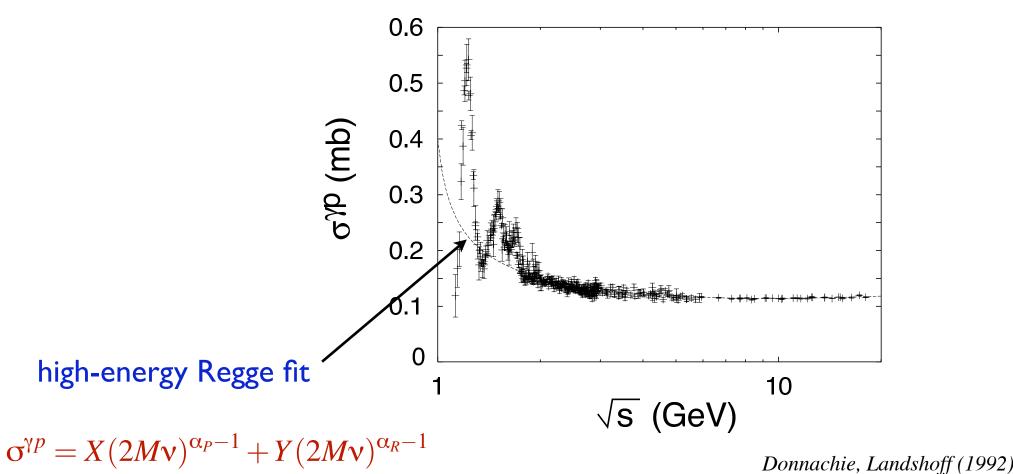


Lalakulich, WM, Paschos (2005)

- integrated from W=1.1 GeV to 1.6 GeV $P_{33}(1232) + D_{13}(1520)$
- importance of background contribution

5. DIS at low Q^2

- as Q^2 decreases, pQCD description (twist expansion) breaks down
 - \rightarrow near real photon point expand in Q^2 rather than $1/Q^2$
 - \rightarrow intriguing indications of duality even at $Q^2 = 0$



low Q^2 behavior constrained by (electromagnetic) gauge invariance

$$F_2(x, Q^2) \rightarrow Q^2$$

$$F_L(x, Q^2) \rightarrow Q^4$$

$$as Q^2 \rightarrow 0$$

since axial current only partially conserved

$$F_2^{\nu}(x,Q^2) \to f_{\pi}^2 \, \sigma^{\pi N} \, as \, Q^2 \to 0$$

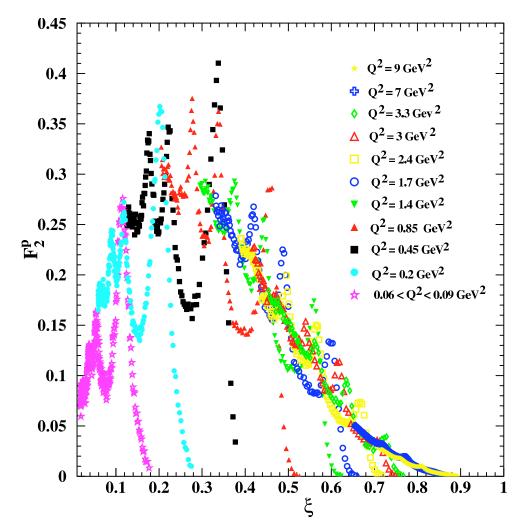
 \longrightarrow model for F_2^{\vee} at low Q^2

$$F_2^{
m v} = \mathcal{Q}^2 \left(\frac{f_{
m p}}{1 + \mathcal{Q}^2/m_{
m p}^2} \right)^2 \, \sigma^{
m pN} \, + \, f_{\pi}^2 \left(\frac{1}{1 + \mathcal{Q}^2/m_{A_1}^2} \right)^2 \, \sigma^{\pi N}$$

gauge invariance or dynamics?

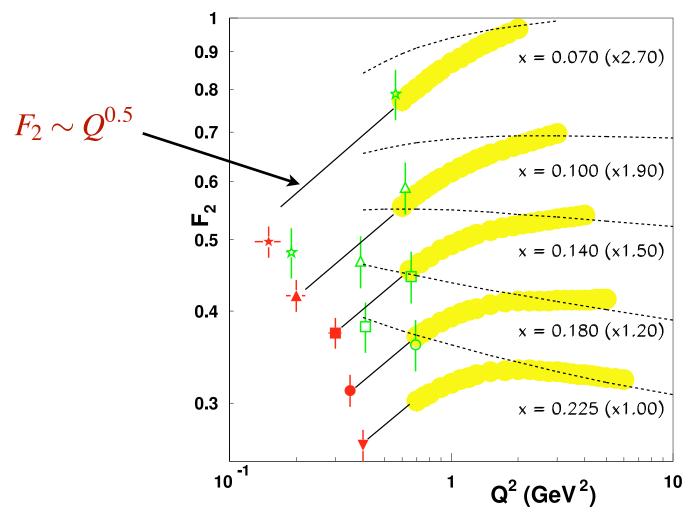
 F_2 valence-like at low Q^2 ?

 \rightarrow cf. xF_3



Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182

gauge invariance or dynamics?

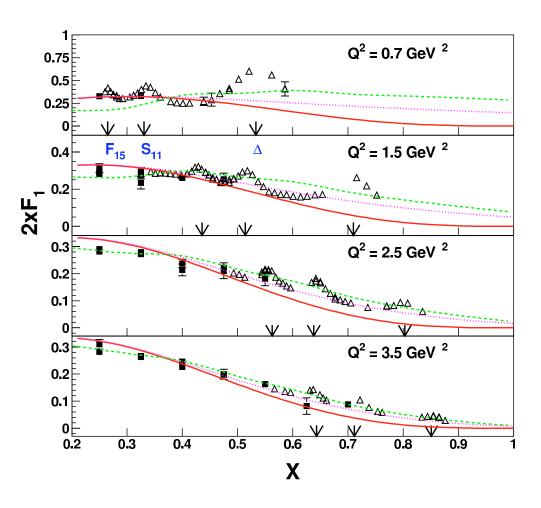


Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182

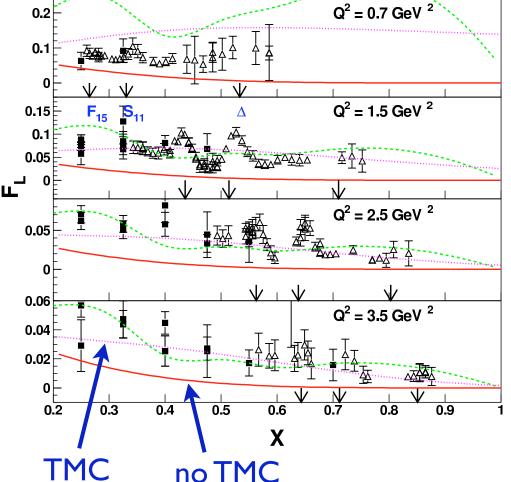
 \rightarrow need lower Q^2 before behavior driven by gauge inv.

Target mass corrections

- kinematical $1/Q^2$ corrections (twist-2) associated with finite value of M/Q
- \blacksquare important at large x^2M^2/Q^2



Christy et al. (2005)



Target mass corrections

- TMCs for weak structure functions calculated by Kretzer & Reno (2004)
- difficulty with (well-known) threshold problem

$$\begin{split} F_T^{\rm TMC}(x,Q^2) &= \frac{x^2}{\xi^2 \gamma} F_T^{\rm LT}(\xi,Q^2) + \frac{2x^3 M^2}{Q^2 \gamma^2} \int_{\xi}^1 \frac{\mathrm{d}z}{z^2} F_2^{\rm LT}(z,Q^2), \\ F_2^{\rm TMC}(x,Q^2) &= \frac{x^2}{\xi^2 \gamma^3} F_2^{\rm LT}(\xi,Q^2) + \frac{6x^3 M^2}{Q^2 \gamma^4} \int_{\xi}^1 \frac{\mathrm{d}z}{z^2} F_2^{\rm LT}(z,Q^2), \\ x F_3^{\rm TMC}(x,Q^2) &= \frac{x^2}{\xi^2 \gamma^2} \xi F_3^{\rm LT}(\xi,Q^2) + \frac{2x^3 M^2}{Q^2 \gamma^3} \int_{\xi}^1 \frac{\mathrm{d}z}{z^2} z F_3^{\rm LT}(z,Q^2), \\ \gamma &= (1 + 4x^2 M^2/Q^2)^{1/2} \qquad \xi = 2x/(1+\gamma) \end{split}$$

since
$$\xi(x=1) < 1$$
 \longrightarrow $F_i^{LT}(\xi, Q^2) > 0$

$$F_i^{TMC}(x \to 1, Q^2) \neq 0$$

Target mass corrections

lacktriangle one solution (Kulagin/Petti) - expand in $1/Q^2$

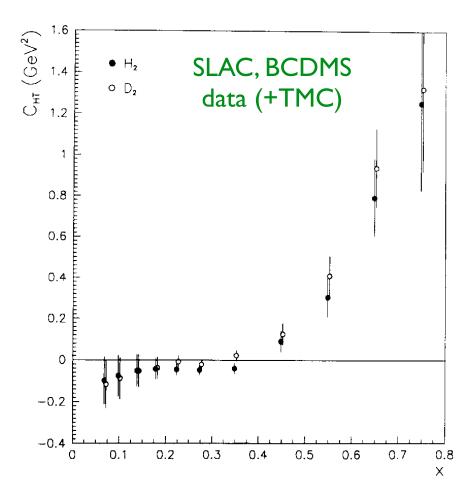
$$\begin{split} F_T^{\rm TMC}(x,Q^2) &= F_T^{\rm LT}(x,Q^2) + \\ & \frac{x^3 M^2}{Q^2} \left(2 \int_x^1 \frac{\mathrm{d}z}{z^2} F_2^{\rm LT}(z,Q^2) - \frac{\partial}{\partial x} F_T^{\rm LT}(x,Q^2) \right), \\ F_2^{\rm TMC}(x,Q^2) &= \left(1 - \frac{4x^2 M^2}{Q^2} \right) F_2^{\rm LT}(x,Q^2) + \\ & \frac{x^3 M^2}{Q^2} \left(6 \int_x^1 \frac{\mathrm{d}z}{z^2} F_2^{\rm LT}(z,Q^2) - \frac{\partial}{\partial x} F_2^{\rm LT}(x,Q^2) \right), \\ x F_3^{\rm TMC}(x,Q^2) &= \left(1 - \frac{2x^2 M^2}{Q^2} \right) x F_3^{\rm LT}(x,Q^2) + \\ & \frac{x^3 M^2}{Q^2} \left(2 \int_x^1 \frac{\mathrm{d}z}{z^2} z F_3^{\rm LT}(z,Q^2) - \frac{\partial}{\partial x} x F_3^{\rm LT}(x,Q^2) \right) \end{split} \qquad \begin{array}{c} \textit{Kulagin, Petti hep-ph/0412425} \end{split}$$

has correct threshold behavior

alternatively, work with $\xi_0 = \xi(x = 1)$ dependent PDFs

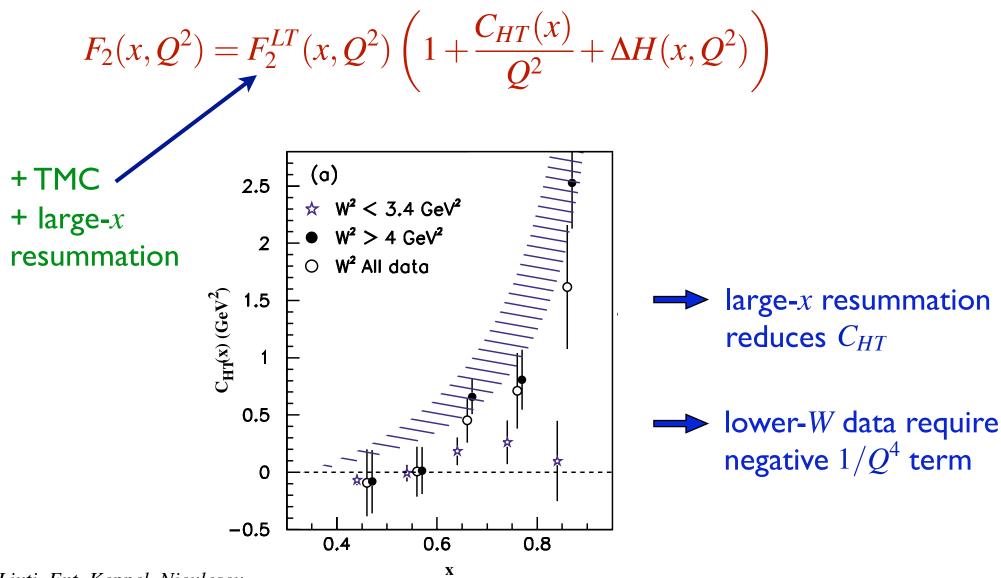
usually parameterized as

$$F_2(x, Q^2) = F_2^{LT}(x, Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$$



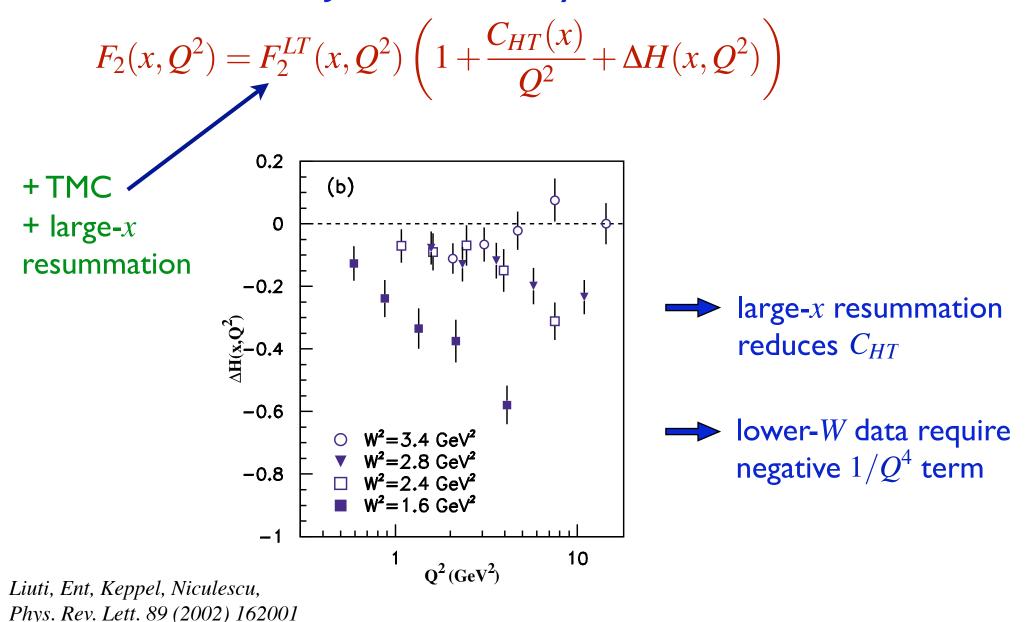
Virchaux, Milsztajn, Phys. Lett. B274 (1992) 221

more recent JLab data analysis



Liuti, Ent, Keppel, Niculescu, Phys. Rev. Lett. 89 (2002) 162001

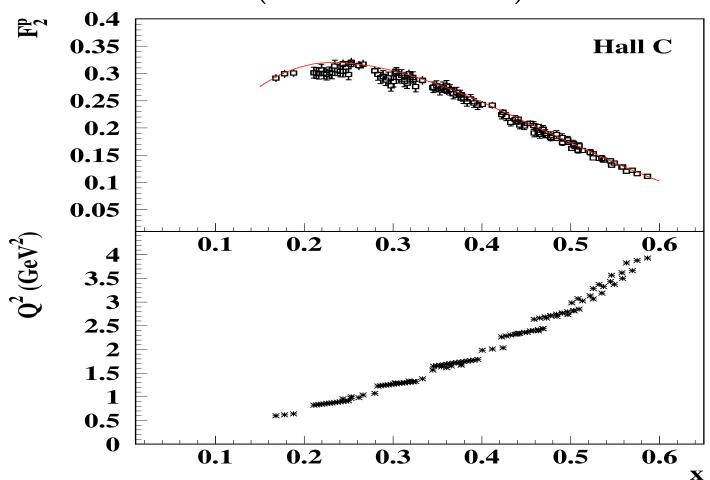
more recent JLab data analysis



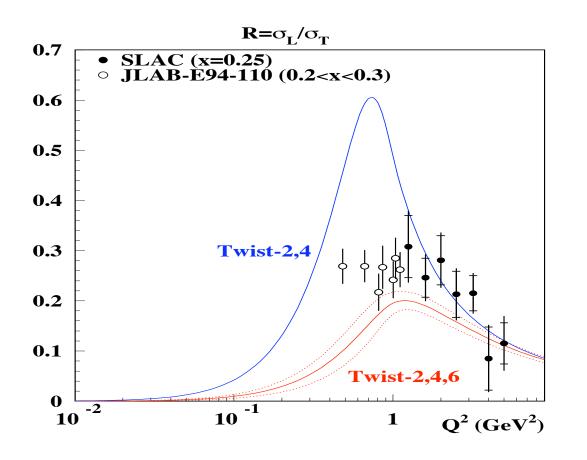
- extrapolation to low Q^2 (Alekhin, Kulagin, Petti 2005) (\rightarrow talk of R. Petti)
 - The leading-twist terms with the NNLO QCD evolution up to $Q^2 = 1 \text{ GeV}^2$ (dominate structure functions for $Q^2 \gtrsim 10 \text{ GeV}^2$).
 - Phenomenological higher-twist terms are parameterized as additive corrections $H^{(t)}(x)/Q^{t-2}$. No Q-dependence of $H^{(t)}$ is assumed. The t=4 terms are important for $Q^2 \lesssim 10~{\rm GeV}^2$ and the t=6 terms at $Q^2 \lesssim 3~{\rm GeV}^2$.
 - The QCD structure functions are interpolated between $Q^2 = 1 \,\text{GeV}^2$ and $Q^2 = 0$ using cubic spline at fixed x and the constraints due to current conservation $F_2 \sim Q^2$ and $F_L \sim Q^4$ as $Q^2 \to 0$.

extrapolation to low Q^2 (Alekhin, Kulagin, Petti 2005)

Comparison with JLAB data beyond resonance region $(W = 1.9 \div 2 \text{ GeV})$



extrapolation to low Q^2 (Alekhin, Kulagin, Petti 2005)



large twist 6! convergence?

NB: $R^{\nu} \not\rightarrow 0$ as $Q^2 \rightarrow 0$

Summary

- Remarkable confirmation of quark-hadron duality in structure functions
 - \rightarrow higher twists "small" down to low Q^2 (~ 1 GeV²)
 - → provides quantitative handle on resonance-DIS transition
- Quark models provide clues to origin of resonance cancellations
 - \rightarrow study systematics of local duality in ν vs. e scattering
 - → detailed phenomenological study underway
- Intriguing low- Q^2 behavior
 - → phenomenological extraction of higher twists
 - \rightarrow $Q^2 \rightarrow 0$ constraints for e.m. but *different* for ν
 - \rightarrow TMCs not completely understood for large x^2M^2/Q^2

